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Abstract

A nonlinear mathematical model for spatial straightness error evaluation based on the minimum zone condition is established in this
paper. According to the error analysis, it is proved that the mathematical model for spatial straightness error evaluation cannot be linearized.
A criterion for verification of the existence and uniqueness of the minimum zone solution is proposed. A new computational method is also
proposed, and practical examples are given. Finally, the correctness of this method is demonstrated using a geometrical solution. This new
method is convenient for computation of uniqueness and exactness of the minimum zone solution. © 1999 Elsevier Science Inc. All rights
reserved.
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1. Introduction

The term “straightness error” generally refers to the
deviation between an actual line and an ideal line. In the
ISO/1101 [1] standard, two types of straightness errors are
specified; namely, planar straightness errors and spatial
straightness errors. Evaluations of planar straightness errors
have been thorough and mature, as found in many reports
[2–7]. At present, however, significant research on spatial
straightness errors is scant. Huang [8] proposed the smallest
parallelepiped enclosure method for spatial straightness er-
ror evaluation from the composition of two orthogonal pla-
nar straightness errors (vertical and horizontal). This
method provides only a part of the solutions conforming to
ISO specifications, because it cannot guarantee that the
evaluated error has the same value in every direction. There-
fore, the spatial straightness error of a minimum cylindrical
enclosure remains to be studied.

In practice, most lines are spatial lines; therefore, the eval-
uation of straightness errors should be carried out in a three-
dimensional (3-D) space. Definition of the spatial straightness
errors of a minimum cylindrical enclosure as defined in ISO/

1101 is: the minimum diameter of a cylinder that can enclose
the whole measured data. According to such a definition, the
error evaluation must be based on the minimum zone concept
so that the spatial straightness errors can be expressed as the
diameter of the minimum enclosed cylinder.

In this study, a nonlinear mathematical model for spatial
straightness error evaluation is established. It can be proved
that this model cannot be linearized. The criterion for the
verification of the existence and uniqueness of the minimum
zone solution is proposed. A new computational method to
attain such a solution is also proposed. Finally, correctness
of this method is demonstrated using a graphic representa-
tion. This method is comprehensive in its theoretical foun-
dation and is convenient in computation.

2. Mathematical model

We assume that the measuring datum line is theZ-axis,
as shown in Fig. 1. The measured points of the spatial line
are expressed by the cylindrical coordinate (r , u, z), where
r is the actual deviation between the measured point and the
measuring datum line,u is the phase angle from thex-axis,
andz is the height of the point location. Because, in prac-
tice, the actual measured line will be in misalignment with
the measuring datum line, the minimum enclosure cylinder
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of the spatial straightness errors can be expressed as a titled
cylinder, as shown in Fig. 2, with its central axiso9o0.

Theo9o0 axis intersects the base plane (z5 0) at point (2x0,
2y0), as shown in Fig. 3.The angle included between theo9o0
axis and theZ-axis on theXOZ plane isa, and on theYOZ
plane isb. The distance between the measured pointP and the
o9o0 axis at any particular heightz is approximate toR, which
can be expressed by the following form.

R 5

Î~r cosu 1 x0 1 z tana!2 1 ~r sin u 1 y0 1 z tanb!2

(1)

R is a function of two groups of variables, which are (r, u, z)
and (x0, y0, a, b). Group (r, u, z) indicates the measured point
with respect to the datum line and is called the form variables
here, expressed by parameterv. Group (x0, y0, a, b) describes
the location and direction of the central axiso9o0 of the tilted
cylinder and is called the alignment variables, expressed by
parameteru. Because the value ofu is very small in practical
precision measurement, we assume tana ' a, tanb ' b. Eq.
(1) can then be expressed as follows:

R~v; u! 5 R~r , u, z; x0, y0, a, b!

5 Î~r cosu 1 x0 1 az!2 1 ~r sin u 1 y0 1 bz!2

(2)

For a certainu value, the maximal value ofR# (u) repre-
sents the maximal diameter of the outer enclosure cylinder
relative to the value ofu, and can be denoted as below:

R# ~u! 5 max$R~v!:v [ V%

5 max$R1, R2, . . . , Ri, . . . Rn% (3)

whereV represents the set of form variables of measured
points,i [ {1, 2, . . . , n}, and n represents the number of
measured points.

The essence of evaluating the spatial straightness error
based on the minimum zone condition is to find the value
of u 5 (x0, y0, a, b)T, which makesR# (u) minimal. This is
essentially the following min–max problem to find the
location and direction of the smallest outer enclosure
cylinder.

H minimize R# ~u!
s.t. u [ E4 (4)

The spatial straightness error can then be expressed by

f 5 2R# ~u! (5)

3. Error analysis using linearized model

The straightness errors of a spatial line, as indicated in
Eq. (2), are obviously a nonlinear function. The nonlinear
model is usually simplified by linearization to solve prob-
lems quickly with approximation. The degree of the model
error is usually estimated to determine whether a practical
nonlinear problem can be linearized. Its influence on the
applicability of the linear model should also be considered
in any engineering problem. In this study, the linearization
of Eq. (2) is analyzed as follows.

With proper alignment of the actual measured line and
the measuring datum line, the form parameteru 5 ( x0, y0,
a, b)T must be very small in comparison to the straightness
error R. Function R(v; u) can be approximated by the
Taylor series expansion withu 5 0.

R~v; u! 5 R~v; 0! 1 ¹Ru~v; 0!u

1
1
2

uTHu~v; 0!u 1 . . .

Neglecting the higher-order terms, it can be simplified using
the following linear model.

R~v; u! 5 R~v; 0! 1 ¹Ru~v; 0!u (6)

whereR(v; 0) 5 r . The first-order partial derivative ofR(v;
u) at u 5 0 is:

¹Ru~v; 0! 5 ~cosu, sin u, z cosu, z sin u !

Therefore,

R~v; u! 5 r 1 x0 cosu 1 y0 sin u 1 az cosu 1 bz sin u

(7)
Eq. (7) is the approximated linear model. The model error
can be estimated using the second-order term:

e < 1
2

uTHu~v; 0!u

where,

Fig. 1. The coordinate expression of the cylindrical spatial line.
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Hu~v; 0! 5 3
­2R
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4
uu 5 0

~8!

Each of the second-order partial derivative ofR(v; u) at
u 5 0 can be obtained as

Substituting Eqs. (9) into Eq. (8), we have:

In this case, the model error can be shown to be consider-
ably high and is deemed not negligible.

With the data given in Example 1 of section 6, we can
attain the following results:

Substituting the above data into Eq. (10), we get the
maximum value ofe as 1.997mm at u 5 80.4°. Thus, it
is obvious that the model error is high, which indicates
the simplified linear model is poor. To summarize the
above analysis we can conclude that the evaluation of the
spatial straightness errors should use the original nonlin-
ear model.

4. Criterion for minimum zone condition

From the above analysis, we know thatR(v; u) is a
nonlinear function ofu. AssumingS # En (a nonempty
open convex set), it can be proved that for every point of

u [ S, the Hessian matrixHu(v; u) of R(v; u) at u is
semipositive definite inEn; that is, all its sequential
principal minors are non-negative. This is proved as
follows.

­2R

­ x0
2 U

u50
5

sin2 u

r
;

­2R

­ y0
2 U

u50
5

cos2 u

r
;

­2R

­a2 U
u50

5
z2 sin2 u

r
;

­2R

­b2 U
u50

5
z2 cos2 u

r
;

­2R

­ x0­ y0
U

u50
5 2

cosu sin u

r
;

­2R

­ x0­a
U

u50
5

z sin2 u

r
;

­2R

­ x0­b
U

u50
5 2

z cosu sin u

r
;

­2R

­ y0­a
U

u50
5 2

z cosu sin u

r
;

­2R

­ y0­b
U

u50
5

z cos2 u

r
;

­2R

­a­b
U

u50
5 2

z2 cosu sin u

r

(9)

e 5
1

2r
@ x0, y0, a, b#3

sin2 u 2cosu sin u z sin2 u 2z cosu sin u
2cosu sin u cos2 u 2z cosu sin u z cos2 u

z sin2 u 2z cosu sin u z2 sin2 u 2z2 cosu sin u
2z cosu sin u z cos2 u 2z2 cosu sin u z2 cos2 u

43
x0

y0

a
b
4 (10)

5 @~ x0 1 az!sin u 2 ~ y0 1 bz!cosu#2/~2r !

x0 5 4.6408mm, y0 5 4.7438mm, a 5 20.000019rad.,
b 5 20.000006rad., zmax5 60 3 104 mm, f 5 23.5262mm.
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Hu~v; u! 5 3
­2R
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4
where,F 5 (r sin u 1 y0 1 bz), E 5 (r cosu 1 x0 1
az).

Its sequential principal minors are:

F2

R3 $ 0;
1

R3 U F2 2EF
2EF E2 U 5 0;

1

R3 U F2 2EF zF2

2EF E2 2zEF
zF2 2zEF z2F2

U 5 0;

1

R3 *
F2 2EF zF2 2zEF

2EF E2 2zEF zE2

zF2 2zEF z2F2 2z2EF
2zEF zE2 2z2EF z2E2

* 5 0.

Therefore,R(v; u) is a convex function ofu and, as a result,
R# (u) is also convex.

To bring the discussion of the following problems more
conveniently, we employ a set of maximal value pointsI#

and the associated mapping setA# (u) as

I# 5 $i :i [ ~1, 2, . . . ,n! andRi 5 R# % (11)

A# ~u! 5 $j~i !:i [ I#% (12)

j~i ! 5 ­Ri~u! 5 S ­Ri

­ x0
,

­Ri

­ y0
,

­Ri

­a
,

­Ri

­b
DT

(13)

5 3
r i cosu i 1 x0 1 azi

Ri

r i sin u i 1 y0 1 bzi

Ri

zi~r i cosui 1 x0 1 azi!

Ri

zi~r i sin u i 1 y0 1 bzi!

Ri

4
The minimum zone condition is closely related to the set

of maximal value pointsI#. These points are valid constraints
between the enclosure cylinder and the evaluated spatial
line. Whether the value ofu satisfies the minimum condition
depends only on the maximal value points and has nothing

to do with the other points. Then, we seek the relationship
between the maximal valueI# and the criterion of the min-
imum zone condition. The representative formula for the
subgradient­R# (u) can be derived using the use of the
following lemma [9].

4.1. Lemma 1

AssumingS is a nonempty convex set inEn, f1, f2:S3
E1 are convex functions, then the subgradient set of func-
tion f# 5 max(f1, f2) can be denoted as follows:

­f# 5 ­~max$ f1, f2%! 5 conv~­f1 ø ­f2!

where

­fi 5 H­f, fi 5 f# 5 max$ f1, f2%
f, fi , f# 5 max$ f1, f2%

conv(­f1 ø ­f2) represents the convex hull of (­f1 ø
­f2), andf represents an empty set.

According to Lemma 1, forR# (u) 5 max{R1, R2, . . . ,
Ri, . . . Rn}, we can easily acquire

­R# ~u! 5 ­~max$R1, R2, . . . , Ri, . . . , Rn%!

5 conv~ ø ­R# i!
i[Î

From Eq. (12) and Eq. (13), we have

ø ­R# i
i[Î

5 @j~i !:i [ I## 5 A# ~u!,

which yields

­R# ~u! 5 conv@A# ~u!# (14)

By its nature, the necessary and sufficient conditions for
the convex functionf( x) to be a global minimum at a certain

Fig. 2. The tilted cylinder enclosing a spatial line.
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point in the open domain should be: 0[ ­f( x). So we can
conclude that the necessary and sufficient condition of min-
imizing R# (u) is: 0 [ ­R# (u). According to Eq. (14), we
have

0 [ conv@A# ~u!# (15)

Eq. (15) gives the criterion for the minimum zone con-
dition. According to this criterion, we then draw the con-
clusion that only when the convex hull ofA# (u) encloses the
origin, can the alignment variable,u 5 ( x0, y0, a, b)T,
makeR# (u) minimal.

5. Computational method

The convex hull of the mapping setA# (u) of maximal
value points is a problem in a four-dimensional (4-D) space.
In the analysis of spatial straightness errors, it is difficult to
represent the problem in a three-dimensional (3-D) space
geometrically. Therefore, an algebraic judgment formula
based on Eq. (15) can be constructed for the computer
computation according to the definition of a convex hull:
[10]

5 Oi51

h

l ij~i ! 5 0

O
i51

h

l i 5 1

l i $ 0
i 5 1, 2, . . . ,h

(16)

Eqs. (16) provide a minimum zone judgment condition
for the outer enclosure cylinder, whereh is the number of

the maximal value point setI#. Whether the outer enclosure
cylinder of the spatial line fits the criterion of the minimum
zone condition depends only on the set of maximal value
points. For a cylinder, because its maximal value points are
valid constraints, the number of these points must be equiv-
alent to the number of unknowns in the mathematical
model. Because there are five unknown coefficients in Eq.
(2)—R, x0, y0, a, and b—the number of maximal value
points should normally be five. In Eqs. (16), the first two
equations are linear equations from whichli can be calcu-
lated. The following inequality,li $ 0, can be used as the
minimum judgment condition. When the minimum zone
condition is satisfied,l i will be in either one of the follow-
ing two cases.

First, in the normal case, alll i are greater than zero.
Because nol i equals zero, the formula

O
i51

h

l ij~i ! 5 0

includes the influence of allj(i); that is, the maximal
value points determined byj(i) are valid constraints.
Hence, the number of the maximal value points ish 5 5.

Second, in the abnormal case, it should also be noticed
that the degenerated phenomenon may sometimes occur.
At this state, allli are non-negative, but certainli may be
equal to zero. For example whenlk 5 0, wherek [ I#, the
item lkj(k) equals zero, so that the minimum judgment
condition will not include the influence ofj(k). There-
fore, the point decided byj(k) will not be a valid con-
straint and can be removed. The number of contour points
will decrease; that is,h , 5. Regardless the value ofh, it
is concluded that the minimum zone condition still can be
satisfied as long as Eqs. (16) are satisfied.

In this study, the computer judgment scheme proceeds
with the following steps.

Fig. 3. The geometric location of the central axis of the tilted cylinder.
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Step 1. Input the measured points in (r , u, z) and the
number of measured pointsn. Let u 5 0.

Step 2. Sequentially select five original pointsi1, i2, i3,
i4, i5 as equidistant points with respect to the
o9o0 axis, and extract the value ofu by solving
(4-D) nonlinear equations.

Step 3. Extract the values of maximal value points and
the set of maximal value points.

Step 4. Judge whether the minimum condition is satis-
fied by the use of Eqs. (16). If yes, print out
results and stop. If not, go to Step 5.

Step 5. Select a new point to substitute one of the five
original points and return to Step 2.

In Step 2, we extract the values of the alignment
variablesu by solving (4-D) nonlinear equations, and
assume that the five original points selected sequentially
are points that are equidistant with respect to theo9o0
axis; that is,i 5 1, 2, 3, 4, 5. The difference between any
two distances from any two pointsijs to the o9o0 axis,
respectively, should be zero. We then solve the following
system equations.

The iterative method is adopted when solving systems of
nonlinear Eqs. (17).u( x0, y0, a, b) 5 0 is chosen as the
original value. Assumingur 5 ( x0r, y0r, ar, br) is the
exact solution of the equations, andui 5 ( x0i, y0i, a i, b i)
is an approximate solution.M(u), N(u), P(u), Q(u) can be
expanded by the Taylor series atui.

M~ x0, y0, a, b! 5 M~ x0i, y0i, ai, b i! 1 a
­M

­ x0
U
ui

1 b
­M

­y0
U
ui

1 c
­M

­a
U
ui

1 d
­M

­b
U
ui

1 · · ·

N~ x0, y0, a, b! 5 N~ x0i, y0i, a i, b i! 1 a
­N

­ x0
U
ui

1 b
­N

­y0
U
ui

1 c
­N

­a
U
ui

1 d
­N

­b
U
ui

1 · · ·

P~ x0, y0, a, b! 5 P~ x0i, y0i, a i, bi! 1 a
­P

­ x0
U
ui

1 b
­P

­ y0
U
ui

1 c
­P

­a
U
ui

1 d
­P

­b
U
ui

1 · · ·

Q~ x0, y0, a, b! 5 Q~ x0i, y0i, a i, b i! 1 a
­Q

­ x0
U
ui

1 b
­Q

­ y0
U
ui

1 c
­Q

­a
U
ui

1 d
­Q

­b
U
ui

1 · · · (18)

where

5
x0r 5 x0i 1 a
y0r 5 y0i 1 b
ar 5 a i 1 c
br 5 bi 1 d

(19)

We kept only the first-order differential terms of the
Taylor series in Eq. (18) and truncated the higher-order
terms, then the linear equations with four unknown coeffi-
cients a, b, c, d were obtained. However, because the
truncation of higher-order terms,a, b, c, d correspond to
the approximate values of (x0r 2 x0i), ( y0r 2 y0i), (ar 2
a i), (br 2 b i), respectively. Therefore, even if the values
of a, b, c, d are extracted, we can only get an approximate
solution forx0, y0, a, b; that is

$M~u! 5 @~r1 cosu1 1 x0 1 az1!
2 1 ~r1 sin u1 1 y0 1 bz1!

2#

2 @~r2 cosu2 1 x0 1 az2!
2 1 ~r2 sin u2 1 y0 1 bz2!

2# 5 0

N~u! 5 @~r1 cosu1 1 x0 1 az1!
2 1 ~r1 sin u1 1 y0 1 bz1!

2#

2 @~r3 cosu3 1 x0 1 az3!
2 1 ~r3 sin u3 1 y0 1 bz3!

2# 5 0

P~u! 5 @~r1 cosu1 1 x0 1 az1!
2 1 ~r1 sin u1 1 y0 1 bz1!

2#

2 @~r4 cosu4 1 x0 1 az4!
2 1 ~r4 sin u4 1 y0 1 bz4!

2# 5 0

Q~u! 5 @~r1 cosu1 1 x0 1 az1!
2 1 ~r1 sin u1 1 y0 1 bz1!

2#

2 @~r5 cosu5 1 x0 1 az5!
2 1 ~r5 sin u5 1 y0 1 bz5!

2# 5 0 (17)
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5
x0i11 5 x0i 1 a
y0i11 5 y0i 1 b
a i11 5 ai 1 c
b i11 5 b i 1 d

where, x0i11, y0i11, a i11, bi11 are the more accurate
approximate values ofx0, y0, a, b. Because Eq. (16) is the
iterative formula, we can extract more accurate values for
x0, y0, a, b by substitutingx0i11, y0i11, a i11, bi11 into
Eq. (19). The iterative process ends, until the values ofx0,
y0, a, b are stable; that is, the difference of the values
obtained in the two successive steps is very small. Iterative
results from the software developed by the authors are very
steady and show that the deviation of the iteration can be
converged to zero.

Substitutingu obtained from the above calculation into
Eq. (2), we can get anR value for all measured points. After
comparison, the maximal valueR# (u), and the set of maxi-
mal value pointsI# can be extracted.

6. Practical examples

6.1. Example 1

Table 1 shows the measured data of the spatial straight-
ness error of a linear stage. The final results of the error
evaluation are shown in Table 3. Because allli are greater
than zero, the evaluated results satisfy the minimum condi-

tion. The evaluated spatial straightness error is 23.5262mm.
In the results shown in Table 2,l1 5 20.076231, 0
appears, so the minimum condition has not been satisfied.
Table 4 gives the evaluated results using the least-squares
method. The minimal enclosure cylinder of the measured
data is shown in Fig. 4.

6.2. Example 2

The measured data of a table moving along a machine
tool guide way is shown in Table 5. The final results of the
error evaluation are shown in Table 7. The spatial straight-
ness error of the guide way is 32.57mm. The intermittent
results shown in Table 6 havel5 5 20.03509, so the
minimum condition has not been satisfied. Table 8 gives the
evaluated results using the least-squares method.

Fig. 4. The minimal cylinder enclosure the measured data.

Table 1
Measured data of example 1

Measured points 1 2 3 4 5 6 7 8 9 10 11 12

Z (cm) 5 10 15 20 25 30 35 40 45 50 55 60
r (mm) 6.1 12.6 11.2 15.0 4.2 12.0 9.2 10.5 16.0 11.0 8.4 3.7
u(0) 34 190.5 159 232 70 8 176 234 342 263 46 12

Table 2
Midcalculation results of example 1

Maximal value points:I# 5 {1, 3, 4, 6, 9}
x0 5 4.536636,y0 5 4.897267,a 5 20.000019,b 5 0.000006
R# 5 11.7791
l1 5 20.076231,l2 5 0.369570,l3 5 0.467130,l4 5 0.073406,

l5 5 0.166125
f 5 2R# 5 23.5582

Table 3
Final evaluated results of example 1

Maximal value points:I# 5 {1, 3, 4, 6, 7}
x0 5 4.640799,y0 5 4.743749,a 5 20.000019,

b 5 20.000006
R# 5 11.763077
l1 5 0.090856,l2 5 0.315581,l3 5 0.403747,l4 5 0.035690,

l5 5 0.154126
f 5 2R# 5 23.5262

Table 4
Evaluated results by LSQ of example 1

Coefficient of least-squares line:a 5 27.0764;b 5 20.0776;
c 5 20.0437;d 5 0.2031

f 5 26.9414
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7. Geometric judgment method

Eq. (15), the criterion for the minimum zone condition,
has an apparent geometrical meaning; that is, the convex
hull of the mapping setA# (u) of maximal value points
encloses the origin. The dimension ofj(i ) indicates the
mapping space; that is, the mapping coordinate system.
From Eq. (13), we knowj(i ) is the coordinate matrix for
every measured point in the mapping coordinate system.

j~i ! 5 ~t1i, t2i, t3i, t4i!
T 5 S ­Ri

­ x0
,

­Ri

­ y0
,

­Ri

­a
,

­Ri

­b
DT

where

t1i 5
­Ri

­ x0
5

r i cosui 1 x0 1 azi

Ri

t2i 5
­Ri

­ y0
5

r i sin ui 1 y0 1 bzi

Ri (20)

t3i 5
­Ri

­a
5

zi~r i cosui 1 x0 1 azi!

Ri

t4i 5
­Ri

­b
5

zi~r i sin u i 1 y0 1 bzi!

Ri

Having substituted the obtainedu, that is, (x0, y0, a, b)
and the cylindrical coordinates (r , u, z) of the maximal
value points into Eq. (20), we can attain the value ofj(i ) of
every point; that is, the projecting points of the mapping
space. The figure enclosed by linking lines between the
projecting points is just the convex hull ofA# (u). Because
j(i ) is a (4-D) variable,A# (u) are mapped in (4-D) space,
then a convex hull in (4-D) space can be acquired. If the
convex hull encloses the origin, the criterion of the mini-
mum zone condition will be satisfied. However, a convex
hull in (4-D) space is difficult to represent graphically, so
we should project it onto each coordinate plane (2-D) of the
(4-D) space, and draw the projected convex set in each
coordinate plane. The judgment of the minimum zone con-
dition will be carried out on each of the planar projected
figures.

We assume that the (4-D) orthogonal coordinates system
is (t1, t2, t3, t4), which consists of six coordinate planes;
namely, (t1, t2), (t1, t3), (t1, t4), (t2, t3), (t2, t4) and (t3, t4)
planes. According to the theory of convex analysis [9], we
have the following geometric judgment condition: only
when all the projected convex sets for the six coordinate
planes enclose the origin, can the minimum zone condition
be satisfied.

The geometrical judgment of the spatial straightness er-
ror evaluation given in Example 1 above is carried out as
follows. Mapping of the five contour points in (4-D) space
occurs as follows:

j~1! 5 ~t11, t21, t31, t41!
T

5 ~0.744, 0.668, 37181, 33400!T;

j~2! 5 ~t12, t22, t32, t42!
T

5 ~20.737, 0.688,2110509, 100200!T;

j~3! 5 ~t13, t23, t33, t43!
T

5 ~20.714,20.704,2142800,2140800!T;

j~4! 5 ~t14, t24, t34, t44!
T

5 ~0.920, 0.392, 276000, 117600!T;

j~5! 5 ~t15, t25, t35, t45!
T

5 ~20.951, 0.279,2332850, 976501!T.

Geometric judgment graphs are shown in Fig. 5.
It is clear, from Fig. 5, that all of the six projected

diagrams enclose the origin, which means that the minimum

Table 5
Measured data of example 2

Measured points 1 2 3 4 5 6 7 8 9 10 11 12

Z (cm) 5 10 15 20 25 30 35 40 45 50 55 60
r (mm) 13.2 9.8 16.9 18.3 17.0 15.2 10.3 9.0 12.4 16.8 11.0 6.3
u (0) 12 78 124 46 178 256 224 289 310 345 45 16

Table 6
Midcalculation results of example 2

Maximal value points:I# 5 {1, 4, 5, 6, 11}
x0 5 2.212072,y0 5 211.107992,a 5 20.000005,

b 5 0.000033
R# 5 16.301811
l1 5 0.096840,l2 5 0.383047,l3 5 0.285638,l4 5 0.285638,

l5 5 20.035090
f 5 2R# 5 32.6036

Table 7
Final evaluated results of example 2

Maximal value points:I# 5 {4, 5, 6, 10, 11}
x0 5 1.6496,y0 5 210.6815,a 5 20.000003,b 5 0.000031
R# 5 16.285259
l1 5 0.0252,l2 5 0.219,l3 5 0.324,l4 5 0.356,l5 5 0.076
f 5 2R# 5 32.5705

Table 8
Evaluated results of example 2 by LSQ method

Coefficient of least-squares line:a 5 0.3075;b 5 6.9422;
c 5 20.1988;d 5 0.0396

f 5 36.6764
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zone condition has been satisfied. This conclusion is the
same as that of the algebraic judgment. The two methods
can be used to verify one another.

8. Conclusions

A new and comprehensive method for the spatial
straightness error evaluation was proposed based on the
minimum zone condition in this paper. The criterion for
the minimum zone condition was proposed to ensure the
existence and uniqueness of the solution. A computa-
tional algorithm was implemented to obtain the results
rapidly. The correctness of the method can be demon-
strated by use of geometric judgment method. The pro-
posed method is very practical in use and provides an
ideal means to evaluate the spatial straightness error
using a personal computer.
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